jutaiSupport & RFID FAQ

What is RFID?Support/FAQ
Radio frequency identification, or RFID, is a term for technologies that use radio waves to automatically identify people or objects. It generally has two important components a TAG or a Transponder and a receiver. The tag is basically a has antenna to transmit the waves through an antenna .then the receiver decodes the received information.

UHF in the worldwide:
uhf in the worldwide

What is automatic identification?

Automatic identification, or auto ID for short, is the broad term given to a host of technologies that are used to help machines identify objects. Auto identification is often coupled with automatic data capture. That is, companies want to identify items, capture information about them and somehow get the data into a computer without having employees type it in. The aim of most auto-ID systems is to increase efficiency, reduce data entry errors and free up staff to perform more value-added functions, such as providing customer service. There is a host of technologies that fall under the auto-ID umbrella. These include bar codes, smart cards, voice recognition, some biometric technologies (retinal scans, for instance), optical character recognition (OCR) and radio frequency identification (RFID).

What is RFID?

Radio frequency identification, or RFID, is a generic term for technologies that use radio waves to automatically identify people or objects. There are several methods of identification, but the most common is to store a serial number that identifies a person or object, and perhaps other information, on a microchip that is attached to an antenna (the chip and the antenna together are called an RFID transponder or an RFID tag). The antenna enables the chip to transmit the identification information to a reader. The reader converts the radio waves reflected back from the RFID tag into digital information that can then be passed on to computers that can make use of it.

Is RFID new?

RFID is a technology that's been around since World War II. Up to now, it's been too expensive and too limited to be practical for many commercial applications. But if tags can be made cheaply enough, they can solve many of the problems associated with bar codes. Radio waves travel through most non-metallic materials, so they can be embedded in packaging or encased in protective plastic for weatherproofing and greater durability. And tags have microchips that can store a unique serial number for every product manufactured around the world.

Is RFID better than using bar codes?

RFID is not necessarily "better" than bar codes. The two are different technologies and have different applications, which sometimes overlap. The big difference between the two is bar code is a line-of-sight technology. That is, a scanner has to "see" the bar code to read it, which means people usually have to orient the bar code toward a scanner for it to be read. Radio frequency identification, by contrast, doesn't require line of sight. RFID tags can be read as long as they are within range of a reader. Bar codes have other shortcomings as well. If a label is ripped or soiled or has fallen off, there is no way to scan the item. In addition, standard bar codes identify only the manufacturer and product, not the unique item. The bar code on one milk carton is the same as every other milk carton, making it impossible to identify which one might pass its expiration date first.

In what ways are companies using RFID today?

Thousands of companies around the world use RFID today to improve internal efficiencies. Club Car, a maker of golf carts uses RFID to improve efficiency on its production line. Paramount Farms - one of the world's largest suppliers of pistachios—uses RFID to manage its harvest more efficiently. NYK Logistics uses RFID to improve the throughput of containers at its busy Long Beach, Calif., distribution center. Many other companies are using RFID for a wide variety of applications. (Visit the Case Study section of our website for more examples.)

What are some of the most common applications for RFID?

RFID is used for everything from tracking cows and pets to providing secure building access to employees. The most common applications are payment systems (Mobil Speedpass and toll collection systems, for instance), access control and asset tracking. Increasingly, retail/CPG and pharma companies are looking to use RFID to track goods within their supply chain, to simplify work in process and for other applications.

RFID Technology

How does an RFID system work?

An RFID system consists of a tag made up of a microchip with an antenna, and an interrogator or reader with an antenna. The reader sends out electromagnetic waves. The tag antenna is tuned to receive these waves. A passive RFID tag draws power from the field created by the reader and uses it to power the microchip's circuits. The chip then modulates the waves that the tag sends back to the reader, which converts the new waves into digital data. (For more information, see About RFID)

What is the difference between low-, high-, and ultra-high frequencies?

Just as your radio tunes in to different frequencies to hear different channels, RFID tags and readers have to be tuned to the same frequency to communicate. RFID systems use many different frequencies, but generally the most common are low-frequency (around 125 KHz), high-frequency (13.56 MHz) and ultra-high-frequency or UHF (860-960 MHz). Microwave (2.45 GHz) is also used in some applications. Radio waves behave differently at different frequencies, so it’s important to choose the right frequency for the right application.

How do I know which frequency is right for my application?

Different frequencies have different characteristics that make them more useful for different applications. For instance, low-frequency tags use less power and are better able to penetrate non-metallic substances. They are ideal for scanning objects with high-water content, such as fruit, but their read range is limited to less than a foot (0.33 meter). High-frequency tags work better on objects made of metal and can work around goods with high water content. They have a maximum read range of about three feet (1 meter). UHF frequencies typically offer better range and can transfer data faster than low- and high-frequencies. But they use more power and are less likely to pass through materials. And because they tend to be more "directed," they require a clear path between the tag and reader. UHF tags might be better for scanning boxes of goods as they pass through a dock door into a warehouse. It is best to work with a knowledgeable consultant, integrator or vendor that can help you choose the right frequency for your application.

Do all countries use the same frequencies?

No. Different countries have allotted different parts of the radio spectrum for RFID, so no single technology optimally satisfies all the requirements of existing and potential markets. The industry has worked diligently to standardize three main RF bands: low frequency (LF), 125 to 134 kHz; high frequency (HF), 13.56 MHz; and ultrahigh frequency (UHF), 860 to 960 MHz. Most countries have assigned the 125 or 134 kHz areas of the spectrum for low-frequency systems, and 13.56 MHz is used around the world for high-frequency systems (with a few exceptions), but UHF systems have only been around since the mid-1990s, and countries have not agreed on a single area of the UHF spectrum for RFID. (For more information, visit the Frequencies section of the AIM website)